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We study quantum systems of interacting Bose particles confined to a bounded 
region A of R ~. For any superstable and (strong) lower regular interaction, we 
obtain uniform bounds on the expectations of exponentials of local number 
operators for any activity and for any temperature. The method we use here is 
an improvement over our previous method on the same subject. As a con- 
sequence of the bounds, any infinite volume limit states are entire analytic and 
locally normal. Furthermore under an integrability condition on the interaction, 
the limit states are modular states. In this case, we use the Green's function 
method to construct an infinite volume limit Hilbert spece, a strongly con- 
tinuous time evolution group of unitary operators and an invariant vector. 
Moreover we prove the existence of the pressure and its independence of boun- 
dary conditions. 

KEY WORDS: Superstable interaction; Bose Einstein statistics; local num- 
ber operators; locally normal states; modular states; Wiener integral formalism; 
pressure; boundary conditions. 

1. I N T R O D U C T I O N  

In  this p a p e r  we c o n t i n u e  o u r  s tudy,  in i t i a t ed  in Ref. 10, of  s ta t i s t ica l  

sys tems  of  q u a n t u m  par t ic les  o b e y i n g  Bose  E ins te in  s tat is t ics  a n d  

in t e r ac t ing  via  a supe r s t ab l e  and  l o w e r  r egu la r  po ten t i a l .  F o r  the c lass ical  

sys tems  wi th  supe r s t ab l e  in t e rac t ions ,  Rue l le  e s t ab l i shed  u n i f o r m  b o u n d s  

on  the  f ini te  v o l u m e  c o r r e l a t i o n  funct ions .  (14) U s i n g  the  b o u n d s  he 

o b t a i n e d  v a r i o u s  resul ts  on  the  inf ini te  v o l u m e  e q u i l i b r i u m  sta tes  a n d  the  

pressure .  In  Ref. 10 we h a v e  e x t e n d e d  part ial ly  Ruel le ' s  resul ts  to  the  q u a n -  

t u m  sys tems  of  Bose  part ic les .  Because  of  t echn ica l  diff icult ies we h a v e  

a s s u m e d  a c o n d i t i o n  s t r o n g e r  t h a n  supe r s t ab i l i t y  on  the  in t e rac t ions ,  
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namely, the strong superstability. Although the results can be applied to 
physically interesting various interactions such as Lennard-Jones types, (~~ 
the method was not suitable to deal with all superstable interactions. 
Recently we came to know that Esposito, Nico!o, and Pulvirenti have 
extended the classical results to the quantum systems obeying 
Maxwell-Boltzmann statistics. (2) In this paper we modify and improve the 
method we developed in Ref. 10 to include the basic ideas in Ref. 2 so that 
the main results in Ref. 10 hold for all superstable interactions. Thus the 
result of this paper is the answer to the problem (c) we proposed in the 
Introduction of Ref. 10. The improved method also enables us to prove the 
existence of the pressure and its independence of boundary conditions. 

It may be worthwhile to remark on some results in quantum statistical 
mechanics. There have been extensive studies on the thermodynamic limit 
in statistical mechanics of interacting quantum systems, and fairly satisfac- 
tory results have been obtained for the thermodynamic functions such as 
pressure. (1'9'13) On the other hand, the results concerning the equilibrium 
states for such systems are less satisfactory. In the dilute regime, detailed 
properties of the infinite volume (thermodynamic) limit states have been 
obtained for various classes of interactions. (~'3'4"6'~6) The charge conjugate 
invariant systems have also been studied in Ref. 5. It has to be pointed out 
that our approach is not perturbative, so it works at all values of tem- 
peratures and activities. In passing we mention that Ruelle's extimates (14) 
have been extended to unbounded classical and quantum spin 
systems.(15'8'l 1) 

We present a brief discussion on the main results of this paper below. 
Let PA be the finite volume Gibbs state for a system of interacting Bose 
particles confined to a bounded region A of the configuration space R v and 
let NB be the local number operator for B c A. We assume that the interac- 
tion satisfies the superstability and (strong) lower regularity conditions (see 
Section 2 for the definitions). We then obtain the bounds of the form (v < 4 
if the potential is not repulsive): 

p a(exp[ aNs] ) <~ exp[A(B, a)]  

where A(B, a) is a constant depending only on the diameter of B and [a[. 
We will give the exact definitions of the models, conditions on the interac- 
tions, and the main results in Section 2. As a consequence of the bounds it 
follows that any limit point p of the state PA in the weak* topology is 
entirely analytic and locally normal in the CCR algebra. Furthermore 
under an additional assumption on the integrability of the potential, the 
state p is a modular state. In this case we use the Green's function 
method (1) to construct an infinite volume physical Hilbert space, a strongly 
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continuous time evolution group of unitary operators and invariant vec- 
tor(s). We also show the existence of the pressure and its independence of 
boundary conditions. 

We next give a breif description of the basic ingredients of the method 
we use in this paper. The general strategy is essentially the same as that of 
Ref. 10. As in Ref. 10 we will use the Ginibre's representation of the par- 
tition function in terms of the Wiener integrals, (6'j'5'7~ and a modification of 
Ruelle's method used for classical systems. (14~ For  quantum systems one 
has to control (a) quantum statistics and (b) interactions between two 
group of Wiener paths (W terms). Compared to the classical systems, these 
problems originate from the fluctuations (deviations) of Wiener paths. As 
in Ref. 10 we will use the fact that the Wiener measure of a subset of the 
paths with large deviations is small. On the other hand, the system behaves 
like a classical one on a subset with small deviations. The basic idea is to 
decompose the Wiener space ~2 n of n paths into disjoint subsets according 
to amount of fluctuations. On each subset we utilize the above facts to 
obtain uniform bounds. The method we developed in Ref. 10 is strong 
enough to control quantum statistics (B-E statistics), but not strong 
enough to control W terms for all superstable interactions. This was the 
reason why we assumed a stronger condition than superstability. On the 
other hand the method developed in Ref. 2 is sufficiently good to handle 
interaction terms for all superstable interactions, yet the method cannot be 
applied directly to solve quantum statistics. Thus we combine and improve 
two methods to control (a) and (b) for any superstable interactions. 

We are unable to obtain pointwise bounds on reduced density 
matrices. But we believe the method we used can be extended to give such 
bounds. By establishing decay properties one ought to be able to see 
whether or not the systems do exhibit the Bose-Einstein condensations. As 
mentioned in Ref. 10, the Wiener integral formalism does seem to be 
unsuitable to handle the systems of interacting Fermi particles. Thus it 
should be desirable to develop a method in the pure operator approach, 
i.e., the second quantization formalism. That kind of a method should be 
useful to study composite systems such as matter systems. 

We try to make this paper as self-contained as possible. Therefore, as 
we follow the general procedures of Ref. 10, it is necessary both to 
introduce some new notations and to repeat some arguments from Ref. 10. 
To make the paper a reasonable size we freely use some technical results of 
Ref. 10 without the proofs whenever its proofs do not affect main 
arguments of the paper. 

The contents of the paper are as follows: In Section 2.1 We introduce 
notations and the definitions of the models. In Section 2.2 we list the 
assumption on the interactions (Assumption A) and then give our main 
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estimate (Proposition 2.2.1). Then, the entire analyticity and local nor- 
mality of any infinite volume limit state follow from the main estimate and 
the arguments used in Refs. 10 and 1. Under an assumption of the interac- 
tions (an integrability assumption) we use the main estimate and the 
Green's function method to construct an infinite volume limit theory 
(Theorem 2.2.3). 

Sections 3 and 4 are devoted to the proof of the main estimate. In Sec- 
tion 3.1 we review the Wiener integral formalism in statistical mechanics 
and we then introduce a decomposition of the space of Wiener paths into 
multually disjoint subsets. With an assumption of one estimate 
(Theorem 3.1.1) we control quantum statistics in Section 3.2. In Section 4, 
we prove Theorem 3.1.1 and so we complete the proof of our main 
estimate. In Section 5 we finally show the existence of the pressure in the 
infinite volume limit and its independence of boundary conditions. 

Before closing the Introduction we would like to make an apology to 
the readers for some printing (and typing) errors in Ref. 10. Although the 
correct meanings are obvious if one reads carefully, we make corrections of 
those errors in the Appendix of this paper, 

2. THE DEFINIT ION OF M O D E L S  A N D  THE M A I N  RESULTS 

2.1. Some Notat ions and Def in i t ions 

We first introduce the Hilbert space and the finite volume Gibbs states 
for a system of interacting Bose particles confined to a bounded open 
region A of the configuration space R v. Let 

n 

4r176 = @,L2(A,  d~xi) (2.1.1) 
i = 1  

be the subspace of L2(A ", d'Vx) formed by the totally symmetric functions 
of n variables x~ ~ A. The associated Fock space 

F(S)(A)= @ ~(.~>(A) 
n = 0  

describe the states of an arbitrary number of 
Hamiltonian is given by 

HA = | H(~ =) 
n~>0  

(2.1.2) 

particles. The total 

(2.1.3) 

in terms of the n-particle Hamiltonian H(A ") which has the form 

HS~) = 1 ~  - ~  ~ , , +  U((x).) 
i = 1  

(2.1.4) 



Superstable Interactions and Bose-Einstein Statistics 263 

where A x, ~ is the Laplacian in the variable x~ with 0-Dirichlit boundary 
conditions on the boundary 8A of A and the interaction energy of n par- 
ticles at the point (xL  = (x~, x2 ..... x , )  is given by 

U((x).) = E ~(x i -x ; )  (2.I.5) 
l ~ i < j ~ n  

where (b is a two-body potential between particles. If the interaction 
satisfies the stability condition 

U((x),,) >~ - B n ,  B > 0 

for all n and (x),, ~ A n, H~ '~ is a self-adjoint operator on ~ ] ) ( A ) ,  and so the 
total Hamiltonian HA is a self-adjoint operator on F(~)(A). (1'13/ 

Let B o A  be a bound region in R v. We define the local number 
operators NB by 

NB I,~,)(A)O(x~ ,..., x,~) = ~ ZB(X~) ~(x~,..., x~) (2.1.6) 
i = 1  

where ZB is the characteristic function of B. We note that for any 
0 e zg(2)(A), NA ~ = rap. The partition function and the finite volume Gibbs 
states are defined by 

2 A = Tr F~,'(A )(exp [ --/3(H A - -  ],iN A ) ] ) (2.1.7) 

and 

pa(A) = ZA ~ TrF(,)(A)(A exp[- - /3(H A -- #NA)]) (2.1.8) 

respectively, for any /3 s 11 +, /l ~ R, and for any bounded operator A on 
F(~)(A). The above are well defined under the stability condition for any 
bounded A c RL (~,13) 

2.2. The assumptions on the Interact ions and the Main  Results 

We now list the assumptions on the interactions. We shall assume that 
the interaction between particles is given by a pair potential 6~: 

U(x,,..., x~) = E r x;) 
l<~i<j<~n 

where ~ is a Lebesgue measurable function which satisfies ~ ( x ) =  ~ ( - x )  
and which may take real values and the value + oo. For  every r e Z v we 
define a half-open cube with side 1, 

Q( r )=  {x6R:  ( f l - � 89  (H+ �89 (2.2.1) 
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These cubes form a partition of R ~. If X =  (xl ..... Xm) e (R~) m, we let n(X, r) 
be the number of points of the sequence X= (Xl ..... Xm) which belong to 
Q(r). 

A s s u m p t i o n  A. (a) Superstability. There exist A > 0, B > 0  such 
that if ~ is a finite subset of Z ~ and 

then 

x~,..., x m ~ ~j Q(r), X=  (xl ..... Xm) 
r ~ PA? 

U(X) >~ ~ [An(X, r) 2 -  Bn(X, r)]  
r G ~  

p' 2(p' - 1 ) 
- - < 1  4 
p ' - i  v p ' + ( 2 - v )  

Thus our results in this paper are improvements of those in Ref. 10. 
(b) If ~b is a positive measurable function with the property that there 

exist constants c > 0  and d > 0  such that ~b(x)>c for lxl<~d, then 
Assumption A is automatically satisfied. (13'14) 

We first give our main estimate: 

P r o p o s i t i o n  2.2.1.  Let the interaction satisfy Assumption A and 
let v < 4 if the potential is not repulsive. For  given f le (0, oo ) and # e R, let 
PA be the finite volume Gibbs states defined in (2.1.7) for the interaction. 
Then for any B c A and a ~ R there is a constant A(B, a) such that 

p A(exp { aN s } ) ~ exp A( B, a) 

holds, where A(B, a) depends only on diam(B) and lal. 

with 

(2.2.2) 

(b) Strong Lower Regularity. There is a positive decreasing 
function ~ on (0, + ~ )  such that 

o~t v+~ lO(t) dt< ~ (2.2.3) 

where # > 1/2, and for any x e R ~ 

~(x) >/-r 

Remark. (a) In Ref. 10 we have assumed a stronger condition than 
superstability, namely, the strong superstability: 

U(X) >>, ~ EAn(X, r) p ' -  Bn(X, r ) ]  
r e .OJ~ 
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We will produce the proof of the above proposition in Sections 3 
and 4. 

We next consider some consequences of Proposition 2.2.1. We 
introduce the CCR algebra of the local observables. For the details 
we refer to Refs. 1 and 13. F o r f e L 2 ( A ,  d~x), let a(f)  and a(f)* be the 
annihilation and creation operators defined on F(S)(A). Then 
~b(f) = (1/xfl2) [ a ( f )  + a(f)* ] for real f has a self-adj oint extension, which 
we write again ~ ( f ) .  We write the Weyl operator by W ( f ) =  exp[iq~(f)], 
and let A(A) be the C* algebra generated by the Weyl operator 
W ( f ) , f  e L2(A, d~x), and let 

A= U A(A) (2.2.4) 
A c R  ~ 

be the quasi local CCR algebra in sense of Ref. 1. To study the infinite 
volume equilibrium states we follow the Green's function method used in 
Chapter 6.3 of Ref. 1. Let (X A be the time evolution automorphism on AA 
given by 

a~(B) = eitUABe im~ 

We then define the finite volume Green's functions by 

GA(A, B; t)= pA(A~,~(B)) 

(2.2.5) 

(2.2.6) 

Although PA is defined as a state over AA, it has an extension to a state on 
A by the Hahn-Banach theorem which we denote again PA" The bounds 

(2.2.7) ]GA(A, B; t)] ~< ]JAIl [[BI] 

imply that there exists a subnet {A~} such that 

G(A, B; t )=  lira GA(A , B; t) (2.2.8) 
A ~  ~ 11 ~' 

for all A, B ~ A, t E R. This is a consequence of Tychonoffs theorem. Clearly 
the value 

p(A) = G(A, 1; 0) (2.2.9) 

determines a state p over the quasilocal algebra A. 

Theorem 2.2.2. Under the assumptions stated in 
Proposition 2.2.1, any weak* limit p of PA defines an entire analytic state 
over the CCR algebra A. The state p has finite local particle density and 
hence is locally normal. 
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Proof. Using Proposition 2.2.1 and following the method used in the 
proof of Theorem II.3.2 of Ref. 10 one may get the bounds of the form 

PA N~ <~ck! [I N+(B~) (2.2.10) 
i i = 1  

where N+(B) is the minimal numner of unit cubes which cover B. The 
theorem follows from (2.2.10) and from the method used in the proof of 
Theorem II.3.3 of Ref. 10. See also Section 6.3 of Ref. 1. 

We next construct an infinite volume physical Hilbert space, a strongly 
continuous time evolution group of unitary operators, and a time trans- 
lation invariant vector. Let the two-body potential q~ satisfy the following 
estimate: For some e > 0 

f dVx(1 + oo (2.2.11) Ix12) v+~ I~(x)12< 

Let G(A, B; t) be the Green's functions defined in (2.2.8). From the bound 
(2.2.10), (2.2.11) and the methods used in the proofs of Proposition 6.3.29 
and Theorem 6.3.31 of Ref. 1, it follows that G: A • A • R -~ C satisfies the 
following properties: 

(1) A, B ~  G(A, B; t) is bilinear for all t~R.  
(2) t ~ G(A, B; t) is continuous for all A, B ~ A. 
(3) G(A, CB;O)=G(AC, B;0) for all A, B, C~A. 
(4) G(1, 1; 0 )=  1. 

A n i n A  (5) Ze .  G(A*, A j; tj-ti)>>-O for any finite sequences { i}i=l 
t , .]  = 1 

and {ti}7= 1 in R. 
(6) [-Weak KMS conditions] For all A, B~A,  and for all f e d  

dt f( t)  G(A, B; t) = ~ dt f ( t  + ifl) G(B, A; - t). 

The following result follows from Theorems 6.3.27 and 6.3.28 of Ref. 1. 

T h e o r e m  2.2.3. Let the interaction satisfy Assumption A and let 
v < 4 if the potential is not repulsive. Assume that the potential satisfies the 
bound in (2.2.11). Let ( ~ ,  rip, f2p) be the cyclic representation of A with 
respect to the state defined in (2.2.9). Then there exists a Hilbert space 
containing ~o, a strongly continuous representation U of R such that 

(i) H=~/,~R U(t) ~ ;  
(ii) G(A,B; t )=(np(A*)f~p,  U(t) np(B)f2p), A, B e A ,  t~R;  

(iii) p is a modular state on A, i.e., g?p is separating np(A)". 

Furthermore (i) and (ii) determine (~,~, U) uniquely up to unitary 
equivalence. 
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Since the proof of the theorem is same as those in the proofs of 
Theorems 6.3.27, 6.3.28, and 6.3.31 of Ref. 1, we do not produce the proof 
here and refer to Ref. 1. 

Finally we discuss the existence of the infinite volume limit pressure 
and its independence of boundary conditions. Let A~,A be the Laplacian 
with boundary conditions OO/On=at) where a EC~(OA). Dirichlet boun- 
dary conditions are corresponded to ~ = ~ .  In this case we have written 
A ~,A by A A" Neumann boundary conditions are corresponded to cr = 0. Let 
2~,A be partition functions obtained by replacing z~ A by A~, A in the 
definition 2A in (2.1.7). Then, it follows from the minimax theorem that 

~-"~A ~- ~oo,m ~ ~'~o-,A ~ ~-'~O,A (2.2.12) 

For  the detailed discussion on boundary conditions, we refer to Section 6.3 
of Ref. 1. 

The finite volume pressure is defined by 

1 
Po,A = JA~ log -~o,A (2.2.13) 

We now state the results on the pressure: 

T h e o r e m  2.2.4.  Let the interaction satisfy Assumption A. Assume 
that the two-body potential 45 satisfies the following decay property: there 
is a positive function q5 on (0, oe) such that J45(Exj)l ~< qS(lxt) for IxF ~>b for 
some b > 0 and 

fb~ ~O(t) t ~-1 dt < oo (2.2.14) 

Then the infinite volume limit pressure 

P~ = lira Po,A 
A -- llv 

exists for each 0 ~ a ~ < o o  as A tends to R ~ in the sense of van Hove. 
Furthermore the limit P~ is independent of boundary conditions a. 

We postpone the proof of the above theorem to Section 5. We believe 
that one may be able to remove the condition on the decay proporty of 
potentials in (2.2.14) by improving the method used in Section 5 (the proof 
of Proposition 5.1). 
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3. B O U N D S  ON LOCAL N U M B E R  OPERATORS 

3.1. The Wiener  Integral Formal ism and the Decomposi t ions 

In this section and Section 3.1 we prove Proposition 2.2.1 under an 
assumption of one estimate (Theorem 3.1.1). The methods we will use are 
the Wiener integral formalism in statistical mechanics and the method 
similar to that used in Section IV of Ref. 10. We will modify the method 
used in Ref. 10 to combine the main ideas of Ref. 2 so that the stronger 
conditions in Ref. 10 are removed. 

We start by introducing the Wiener integral formalism. For  the details 
we refer to Refs. 1, 6, and 7. We will use the following notation: 

(X)n= (Xl,..., X,), 

d(x)~ = ~ d~xi 
i = 1  

X i �9 R v 

(3.1.1) 

The path space of the Wiener measure can be choosen to be 

Q =  c( [0 , /3 ] ,  R v) 

The Wiener measure P~(x, y; d6o), conditioned on those paths co �9 ~2 with 
~o(0) = x, ~o(r = fl) = y, is a a-additive, finite measure on ~2. Let X~ be the 
characteristic function of the subset {co �9 s co(r) �9 B for all z �9 [0,/3] }. We 
will drop the superscript/3 from P~(x, y; dm) and Xw if there is no confusion 
involved. We set 

P A(X, y; do) -- ZA(e)) P (x ,  y; dco) 

PA((X)n, (Y).; d(o~)n) = F[ PA(X], yj; do)j) 
j = l  

(3.1.2) 

Let ~A((X)n, (y)n) be the kernel of the operator exp(--flH~A ")) on L2(An), 
where HCA nl is the n-particle Hamiltonian given in (2.1.3). By the Feyn- 
man-Kac  formular (1'6'7) 

O~A((X)n,(y)~)=fwPA((x)n,(y)n;d(~o)n)exp[-ffU((c~(z)),)dr ] (3.1.3) 

Let Sn be the group of the permutations of {1, 2 ..... n} and let A be the 
multiplication operator by a function A((x)n) invariant under any ~z �9 Sn. 
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Then we have 

1 
Tr~{/,{A)(A e x p [ -  flH(A~'] ) = ~. ~s~ f A. d(x). A( (x).) 

(3.1.4) 

where 7c(x)n = (x~(1) ..... x~(,)). 
We next express the expectation of local number operators in terms of 

the Wiener integrals. From (2.1.1)-(2.1.4), (2.1.7), and (2.1.8) it follows 
that 

2A= ~ S Tr,~}(A)(exp[-flH~)]) 
1 i = 0  

pA(exp(aN~)) = 2A 1 ~ Z ~ Tr~2,~(A)(exp(aNa) e x p [ - f l H ~ ' ) ] )  
n = O  

(3.1.5) 

where z = e ~" and the term corresponding to n = 0 equals to 1. In the rest of 
this paper we use the following notations; 

s u((co)~) = w ( ( c o ( ~ ) ) ~ )  dz 

(3.1.6) 
g /  

NB((x),) = ~, Zs(xi) 
i = 1  

From (3.1.4) it then follows that 

1 
Tro,2,)(A)(expEaNB] exp[ -flH]')]) = n~ ~ s  JA" d(x)n exp[aNe((x)n) ] 

n (3.1.7) 

• "J~f PA((X),,, ~(x)n; d(co)n) e u((o)l,,) 

By a translation one may assume that B is contained in the ball of diam(B) 
centered at the origin. 

We now introduce a decomposition of the space of n paths into dis- 
joint subsets. To do this we will use the following notations: For  any given 
path configuration (coL, and for any given unit cube Q(r) centered at r ~ Z", 
let 

n(r, "c)= card{coi: coi ~ (c~ co j r ) ~  Q(r)} (3.1.8) 



270 Park 

That is, n(r, r) is the number of 
given small ~ > 0 and for q e N, let 

lq = 

A q =  

[Aq] = 

where [a]  is the integer part of 

7(v, 

coi, i =  1, 2 ..... n, such that coi(r) E Q(r). For 

[ e  ~q ] 

- l  1 1 v [ q - -  7, lq + 7] (3.1.9) 

(21q+ 1) v 

a ~ R. For  a given v ~ N, let us denote 

2 
2) = 1 + - -  (3.1.10) 

v + 2  

We now introduce a decomposition of the space of n-Wiener paths into a 
union of multually disjoint subsets 

O n = ~ o U ( ~ )  Cq) (3.1.11) 
q >~ qo 

as follows: For fixed 1 < l < p < 7(v, 2) which we will choose later and for a 
fixed large qo ~ Z, let 

Fq(p)= sup ~ n(r, r) p (3.1.12) 
"c~ [O, f l]  Q ( r ) = A q  

= ~ I_ n(r, r) 2 dr (3.1.13) Eq 
Q ( r ) = A q  ~0  

O~o = {(co), e f2": Fq(p) + Eq < IAq[ t for all q >~ qo} 

gq={(co),ef2":Fq(p)+Eq)lAqlZandFr z (3.1.14) 

for all q0 ~< q < q' } 

The above decomposition is a modification of those used in Refs. 10 and 2 
in the following way. In Ref. 10 we have only used the quantity Fq(p) to 
define go and gq. On the other hand the authors of Ref. 2 only used the 
quantity Eq for the decomposition. In a sense Fq(p) and Eq are L ~ norm 
and L 1 norm, respectively. As mentioned in the Introduction the method 
used in Ref. 10 is good enough to control the quantum statistics, but not 
powerful enough to handle all superstable interactions. Even if the method 
of Ref. 2 is appropriated to deal with interaction terms, it cannot control 
the quantum statistics. Thus we conbine two methods as above. 

We observe that for q < q' and for r E [0, fl] 

n(r, r) ~ [Aq,] ]Aq,] ~ ~ n(r, r) p 
O ( r ) c A q '  e ( r ) c m q "  (3.1.15) 

<~ ]Aq,ll+(Z 1)/p on  OPq 
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by Holder's inequality and by the definition of gq in (3.1.13) and (3.1.14), 
Also we have that for q < q' 

I~n(r,z)2dz<lAq,[ l on d~q (3.1.t6) E 
Q(r) = Aq 

" kl 

The bounds in (3.1.15) and (3.1.16) will be used later repeatly. 
Let d~ be the subset of gq in which k paths bit Aq+ ~ during the time 

interval [0, ill: 

gq,k = {(o))~ e gq: card({coi: ogi('c)ffAq+ 1 for some r e [0,/~]}) = k }  (3.1.17) 

and let O~q.k be the subset of gq in which col,..., cok hit Aq+ 1 during [0,/~]: 

~q.k={(co)~egq.k:oo,(r)eAq+lforsomeve[O,~],i=l,...,k} (3.1.18) 

Then we have 
e q  = U 4 ,  k (3.1.19) 

k 

From the decompositions in (3.1.t2) and (3.1.19) and from (3.1.5) and 
(3.1.7) it follows that 

pA(exp[aNB])=Go+ ~ ~ ~G(")(q,k) (3.1.20) 
n--O q>~qo k 

where Go is the contribution from go: 

zn fA 1 s z x 
n ~ 0  ~ n n 

x I_ PA((X)"' 7c(x)n; d(co)~) e -v((~)") (3.1.21) 

and G(")(q, k) is the contribution from gq,k; 

Z n 

G'n'(q, k) = S~ ' ~.. ~s,  f A~ d(x)~ exp[aNB( (x)~) ] 

x f_ PA((x)~,~(x),;d(co),)exp[-U((co),,)] (3.1.22) 

For a given B c A we choose qo sufficiently large so that B ~ Aqo. Then by 
the bound in (3.1.15) we have that for qo~q 

Ns((x)~)<~ ~ n(r,r=O)<~[Aq+l[ ~+(' ~)/P on gq (3.1.23) 
Q(r)eAq+l  
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and so 

Go ~< exp[ lal ]Aqol I + (l- 1)/p] 

G(")(q, k) <~ 3 ~  1 z n exp[ lal IAq + 111 + ( l -  1)/p] (7(,,)(q, k) 
(3.1.24) 

where 

G(~)(q, k) = ~. d(x)~ PA((X). ,  ~(X). ; d(co).) e -  u((o~).) 
n ' ,k 

(3.1.25) 

We reindex the k paths coi's which hit Aq+ 1 SO that co i, i =  1, 2 ..... k hit 
Aq+ ~. There are n ! / ( n - k ) !  k! ways to choose k paths among n paths and 
So 

1 

x f,~qo,k PA((X)~' n(X).; d(~o)~) e - U(('~ 
(3.1.26) 

Notice that we have ( n -  k)! factor instead of n!. The total number of terms 
in the above is card (Sn)= n!. This is the main problem arising from quan- 
tum statistics. 

For any configulation {coi} of paths in ~,k we write 

u,((~)~) = u~((~(~))A d~ 

u~((~),,_D = f[ u=((~o(~))~_ ~) d~ 

W((co)~, (o))~ ~) = W((~O(r))k, (OJ(r))n g) d'c 

(3.1.27) 

where 

Ul(((O( '~))k)  ~- E ~((~Oi(T ) -- (Dj(T)) 
l ~ i < j < ~ k  

u=((o(~))~ ~) = ~ ~(~,(~1- ~0A~)) 
k + l < ~ i < j < ~ n  

k 

i=1 ] = k + l  

(3.1.28) 
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We then have 

U((co).) = U~((~o)k ) + U2((c~)._k) + W((co)k, (c~)._~) (3.1.29) 

As in Ref. l0 we define the fluctuations of k paths as follows: we write 

V(~o) = sup Ico('rl)- co(z2)l 2 
�9 i,T2 ~ [0,#3 

k (3.1.30) 
v( (~ )~ )  = y. v(~o~) 

i = 1  

The following is the main technical estimate in proving Prososition 2.2.1: 

T h e o r e m  3.1.1.  Let the interaction satisfy Assumption A and let 
v < 4 if the potential is not repulsive. For  a given b > 0 one can choose ~ in 
(4.1.9) small enough, q0 large enough, and l < l < p < y ( v ,  2) such that 
there exist constant c > 0 and ~ > 0 such that 

ul((~)~) + bV((~o)~) + W((~)k, (~o). k) 

c(IAql l+E(t ~)(a+*)/p3 +kl+~) 

o n  4 ,  k , 

The above theorem is the result corresponding to Theorem IV.2.1 of 
Ref. 10. We will prove the theorem in Section 4. 

3.2. The Proof of Proposition 2.2.1; Control of Quantum 
Statistics 

In this section we prove Proposition 2.2.1 under the assumption that 
Theorem 3.1.1 holds. The proof of Proposition 2.2.1 is almost identical to 
that in Section IV.3 of Ref. 10. In Ref. 10 the expression in Theorem 3.1.1 is 
bounded by IAq+ ij1 + (l- l)~/p for some 7 > 1 (see Theorem IV.3.1 of Ref. 10) 
and also k is bounded by IAq+ll l+(t 1)/p on #q,k. Here we do not have 
such a bound for k. But we have the convergent factor k ~+~ in 
Theorem 3.1.1. Thus, if one re~lefine My in (4.3.26) of Ref. 10 by 
M~ = k + 2 [Aq + ~-1 log(z , + 3)[ 1 + (!-  1)/P, every argument used in Section IV.3 
can be applied to our cases here. Therefore in principle the proof of 
Proposition 2.2.1 is complete. Since we try to make this paper as self-con- 
tained as possible, we will prove Proposition 2.2.1 in more details by 
following every necessary steps used in Section IV.3 of Ref. 10. 

From Theorem 3.1.1 and from (3.1.26) and (3.1.29) it follows that 

G(')(q, k)<~exp[-c([Aqll+(t-1)(l+~)/P +k l+ ' ) ]  ff~")(q, k) (3.2.1) 

822/40/1-2-18 
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where 

~(n)(q, k) - 1 
(n_k)! k! ~ ill, d(x)', fgq,~ PA((x),,' rc(x),,; d(og),,) 

x exp[-bV((og)k)- U2((o9), k)] (3.2.2) 

As we have discussed before, there are n! terms in (3.2.2). Therefore one 
has to show that many terms in (3.2.2) do not contribute. The main idea is 
decoupling of the paths in {ogi: i =  l,.--, k} from the paths in 
{ogi: i=k+ 1,..., n}. On the subset #q,k a path o9~, i<~k, may join to a path 
ogj, k < j ,  to form a composite path, i.e., x~(i)= xj. If the fluctuation of o9i is 
small, there will not be many ways to form a composite tragectory. On the 
other hand, if the fluctuation is large, the corresponding Wiener measure 
will be small. Thus we further decompose the subset ~q,~ into a union of 
mutually disjoint subsets corresponding to large and small fluctuations. 

We adapt the notations used in Section III.2 and Section IV.3 of 
Ref. 10. For a unit cube A and for l~>0, we write 

A(A, l )=  {x~RV: max inf Ix i -  yi I <~l} 
l <~i<<. v y ~ A  

That is, A(A, I) is the cube with its volume (2l+ 1) v containing A at the 
center. We denote 

#~J,t = {o9 e f2; og(r) e A, o9(~') e A(A, l+ 1)\A(A, l) for some r, r ' e 1-0, fl], 

and og(r")r l+ 1) C for all r " s  [0, fl]} (3.2.3) 

g~,-1 = {o9 e f2: og(r) e A for all r e  [0, fl]} 

where A c is the complement of A. Note that any path in ga,l, l>~0, must 
visit A and A(A, l+ 1)\A(A, l), but not A(A, l+ 1) C. We also have that for 
any positive function F on s 

I PAx, y; dog)J1 - z . ;+ , (og)]  F(og) 

<~ ~ ~ f_ P(x, y; dog)F(o9) (3.2.4) 
ZJCAq+l 1= 1 "6~,1 

where Z~ ~ A,+~ is the summation over unit cube A = Q(r)c Aq+l. That is, 
in order to hit Aq+ 1 the path must hit one of Q(r) ~ A q +  1 . For the detailed 
derivation of (3.2.4) we refer to the derivation of (4.3.7) in Ref. 10. Let g~)t 
be the subset #~,~ for the i path, i =  1,..., k. We write 

~(q, k; (A~, l~),..., (A~, lk) ) 

= {(o9), e ffq, k; og~e ~ l ~ ,  i =  1,..., k} (3.2.5) 
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Since the fluctuation is bounded by V(co)<...[diag(A(A,l+l))]2<... 
4v( /+2)  2 on ga,t, we have that on g(q, k; (A1, ll),... , (Ale, lie)) 

Ie 

V((co)ie) ~< ~ (l, + 2) 2 4v (3.2.6) 
i = 1  

We remember that coi, i<~k, must visit Aq+ 1 at  least one time. Thus we 
have 

feo,~ PA(x).,  (y).; d(co).)... 

k 

= feq PA((X),, (y)~; d(co),) H [ 1 - z ] q + ~ ( c o i ) ] -  (3.2.7) 
,k i =  1 

We apply (3.2.7), (3.2.4), and (3.2.6) (in that order) to (3.2.2) to obtain the 
bound 

P~)(q, k) ~< ( . -k ) !k !  E ' E " 
A I ~ A q + I  A k ~ A q + l  11= --1 l k =  - - I  

b 

x exp/-4vb ~ (l ;+ 2) 2] F(")(q,k; (A1, l~) ..... (Ale, le) ) 
i = 1  

(3.2.8) 

where 

P"~(q, k; (a,, ll) ..... (&, tie)) = E ~ d(x).K((x)., re(x).) 
r g ~ S  n d A n 

K((x). ,  (y) .)  - f.q, ie,(~l.Z,>.,(~,,t~)) (3.2.9) 

x Pa((X)., (y) . ;  d(co).) e ~2((~,). ~) 

We recall that for any configuration of n path (co)n in 
g(q, k; (AI, ll),..., (Ak, lk)) the path coi, i =  1 ..... k, must stay inside of 
A(Ai, l~+ 1) by (3.2.3) and (3.2.5). This means that coi, i =  1,..., k, cannot 
form a composite path with any path cot if co~(z = 0)~ A(Ai, l~ + 1)c. By the 
bound (3.1.15) there are at m o s t  [Aq+~ llog(li+3)[ l+(l-1)/p number of paths 
which can hit A(A, l i + 1 )c  Aq+~ l log(h + 3)" Thus if lt, i~< k, are small, many 
terms in (3.2.9) will be vanished. If l[s are large, the corresponding Wiener 
integral will be small (see Proposition 3.2.3 in the following). This is the 
idea of controlling quantum statistics. 

822/40/'1-2-18 * 
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We witl use the following abbrev ia ted  notat ions:  

m(li) = [ A q +  ~ - i  log(li+ 3)] 1 + [1-1) /p]  

MI, = [2M(/ i ) ]  + k (3.2.10) 

7 = max  {/~,..., l~ } 

We remark  that  the definition of M s differ to that  in (4.3.26) of Ref. 10 by 
the factor k. We will use the fact that  M s - k  > M(7)  as in Ref. 10. We write 

S(k, n) = {~ e S , :  rc is a pe rmuta t ion  of {k + 1,..., n } } 

E(m, m')  = {re s S ,  : ~ is an interchange o f m  with one of 

m, m +  1 ..... m' form~rn '< .n}  

E(m, m') = E(m, n) i f m '  > n (3.2.11) 

Ek(l~ ..... lg) = {p = P k P k - I " ' ' P l ;  pgEE(i, Mr,)} 

/~k(l~ ..... l~) = {p = Pl P2" " Pk; pi~ E(i, MI,)} 

E,.k= {P= Pl P2"" Pk; Pi e E(i, n) for i =  1 ..... k} 

Here  we have modified the definition of Ek(ll ,..., lk) in (4.3.14) of Ref. 10 by 
replacing E(i, [2M(l i ) ]  ) by E(i, Mr). We note that  

S n = E n , k g ( k ,  n) 

and 

card(/~k(/1 ..... lk)) = card(Ek(/1 ,..., lk)) 

k 

/ = 1  

For  any a ~ S(k, n) we use the no ta t ion  

Z~ : the characterist ic function of the subset 

{(X)n e Rvn: IIx~<k+l)[I < ]lx~(~+2)ll ~< "'" ~< IIx~(.)l] } 

where I Ix l [  = -- max1 ~< i~<v Ixil �9 We then have 

Y~ z~((x).)= Y~ Ze(~(X).)=I 
a e S(k,n)  a ~ S(k,n)  

where e ~ S ( k , n )  is the identity element. The  following is 
cor responding to L e m m a  4.3.1 of Ref. 10. 

(3.2.12) 

(3.2.13) 

(3.2.14) 

the result 
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L e m m a  3.2.1.  Let K ( ( x ) . ,  ( y ) . )  be defined as in (3.2.9). Then 

ff(")(q, k; (3~, I~) ..... (Ak, lk)) 

<~ k! ~ ~ fA d(x),z~((x),) K(a'(x),, pa(x)~) 
p ~  E'k(ll,...,lk) a,f f '  c- S ( k , n )  n 

ProoL The lemma follows from the method used in the proof of 
Lemma 4.3.1 of Ref. 10, A(J,I)~Aq+~-llog(t+3 ) for A=Aq+ 1, and from 
the fact that Me , -k  > M(l~). For the details, see the proof of Lemma 4.3.1 
of Ref. 10. 

We now briefly review the partial symmetry spaces introduced in Sec- 
tion 3.2 of Ref. 10. Let A, be a subset of S,. The subset A, is not necessary 
subgroup of S~. Let {~} be an orthonormal base for L2(A, d~x) and let 
ocf(')tA) be the closed subspace of LZ(A n) spanned by the following vectors: An~  

card(A~) i ~ fit(x~(1))fi2(X~(z))...fi,(x~(,)) 
~ A n  

~(~) A Let P(A~) be the projection operator onto ~.,().  For anyfeL2(A ~) we 
have 

(P(A~)f)(x)~ = card(A,) -1 ~ f(~r(x),) 
~ A n  

If A be an operator of the trace class which admits an integral kernel 
A((x)~, (y).), it follows that 

Tr L2(A,)( P( An) AP( An) ) 

~<card(A~) 2 ~ fA d(x)"A(~-l(x)"'~' l(x)") 
rc,~z' E An  n 

(3.2.15) 

For more detaily we refer to Ref. 10. 
Let P(S(k, n)) and P(Ek(/x,... , lk)) be the projection operators onto 

~ ' ~  ~A~ and Jr(') CA~ respectively. For any a~ S(k, n), let )~ be the �9 S ( k , n ) \  t Ek( l l , . . . , l k ) \  l~ 

(projection) operator defined by 

(z~f)(x), = Ze(a(x)~) f(  (x)n) 

for anyf~L2(R~n). From (3.2.13) we have 

Z~ = 1 (3.2.16) 
c S ( k , n )  



278 Park 

In order to avoid notational complications we use the following 
abbreviated notations: 

PI = P(S(k, n)) 

P2 = P(Ek(ll ..... lk)) (3.2.17) 

C1,2 = card(S(k, n)) 2 card(E~(l 1 ,..., lk)) 

Let K be the operator on L2(A n) defined by its kernel K((x)n, (y)n), where 
K((x), ,  (y) ,)  has been defined in (3.2.9). Using (3.2.15) the following is 
easy to derive: 

C - t  TrL2(A.)(XePIKPxP2Ze) = 1,2 ~, 2 
p e F.k(ll,...,lk) cr,a' e S ( k , n )  

x ~ d(x),Ze((X),) K(cr'(x),, pa(x),)  (3,2.18) 
J A  n 

and so by Lemma 3.2.1 we have 

F(<(q, k; (A 1. 11),..., (ak, lk))<~k? Cl,z T r L 2 ( A . ) ( Z e P 1 K P I P 2 Z e )  (3.2.19) 

We use the identity (3.2.16) to obtain 

TrL2(A,,)(ZeP1KPzP2Xe) = ~ TrL2(A")(z~P~KPIz~"PaZe) 
~r" E S ( k , n  ) 

Let ~ and M~ be defined as in (3.2.10), and let 

A(k, n) =- {a" e S(k, n): TrL2(A,)(zeP , KP, ){~"P2ze) r 0} 

(3.2.20) 

(3.2.21) 

Then the following result corresponds to Lemma IV.3.2 of Ref. 10: 

Lemma 3.2.2: 

card(A(k, n)) ~< card(R(/, ..... Ik)) M 7 !/(M s - k )! 

ProoL The lemma follows from the method same as that used in 
Lemma IV.3.2 of Re[ 10 and from the fact that M ~ - k  > M(7). For the 
details we refer to Ref. 10. | 

Using the definition of A(k, n) and (3.2.19), (3.2.20) we obtain 

F(n)(q, k; (A1, l 1,..., (Ak, lk) ) ~< k! C1, 2 ~ TrL2(a~ ) 
r ~ A ( k , n )  

x (ZeP1KPIZ~,,P2Ze) (3.2.22) 
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The next step is to get a bound for (3.2.22). To do this, we define 

( .  

Ka,,(x, y ) =  | P(x, y; dco) (3.2.23) 

Let K~,~ be the operator corresponding to the kernel K~,~(x, y). Let PA(A,0 
be the projection operator onto L2(A(A, l))= LZ(R~), and let 

R~,,= P A(aa+ I, exp (~ A) P A(~.,+ I) (3.2.24) 

We then have the following result (Proposition III.2.2 of Ref. 10): 

k e m m a  3.2,:3. For l = - 1 ,  0, 1,... there are constants c~>0 and 
c2 > 0 such that (,2) 

(a) Ka.t(x, y)<~cl exp - 1 - ~  K~,~(x, y) 

(b) TrL2(R~)(Raj)<~c2IA(A, l+ 1)] 

where Raj(x, y) is the kernel ofR~. z and tA(A, l+ 1)[ is the volume of 
A(A, l+  1). 

For the proof of the above lemma we refer to Ref. 10, the above result 
implies that for large l (for large fluctuation) the contribution of the Wiener 
measure is small. 

We now start to get a bound for (3.2.22). From (3.2.5) the following is 
obvious: 

g(q,k;(Al,l~),...,(A~:,lk))= X ~,t,i x~"  ~ (3.2.25) 
\ i =  l / 

Using (3.2.15) [and the method to get (3.2.20)] it is easy to sheck that ~m) 

p ~ ~k(l l , . . . , lk)  ~',~7 ~ S ( k , n )  

x ~ d(x)n Ze((x),) K(cr'(x),,, pa(x)n) Ze(pa"(x),,) (3.2.26) 
JA  n 

From the definition of K((x)n, (Y)n) in (3.2.9) and from (3.2.25) it follows 
that 

K((x)n, (y),) ~ s162 P((x)k, (Y)k; d(~o)k) 

X (exp[-f lH3 k])((x)n_ k, (Y),-x) (3.2.27) 
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We use Lemma 3.2.3(a) to obtain 

i = 1  

) r((x)n, (y).)  = K~,~(x,, y,) 

• (exp[--/~H(2-k)])((x). k, (Y).-k) (3.2.29) 

Let Y be the operator corresponding to the kernel Y((x)n, (Y)n): 

k 

(3.2.30) 

which is positive operator on L2(R~n). From (3.2.22), (3.2.26), and (3.2.28) 
it follows that 

P(~)(q, k; ( A 1 , / 1 ) , - . . ,  ( A k ,  l k ) )  

exp - ~ ~< k! CI,2 ca 16/~ 
i 

x ~ TrL2(A~ 
~r" ~ A(k,n) 

(3.2.31) 

We now use the positivity of Y and the abstract H61der's inequality (~2) to 
conclude that 

TrL2(A,)(ZePx YP1Zo" P2) 

<~ [TrL2(A,)(ZeP1 YP~)]I/2[TrL2(A,~(Z~,,P~ YPI)] u2 (3.2.32) 

Here we have used the fact that Tr(PAP)<~ Tr(A) for any projection P and 
positive A. A direct computation gives us that for any a" e (S(k, n)): 

TrL2(A,)(z~,P, YP1)= [ ( n - k ) ! ]  -1 TrLZ(A")(P~ YP1) (3.2.33) 

See the below of (4.3.36) of Ref. 10 for the detailed derivation of the above 
equality. We substitute (3.2.33) into (3.2.32) and then we use the definitions 
of P~ and Y in (3.2.17) and (3.2.30), respectively, to obtain 
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TrL2(A")(ZeP1 YP1Zo"P2) 

1 
(n - k)------~ Tr/2(A,)(P~ YP~ ) 

1 (i_I~I 1 ) - ( n - k ) !  TrL2(A)(I~,.z,) Tr~Lk(A)(exp[_/~g(A, k)]) 

1 k 
~< (n -- k)~------~ c2k 1-[ (2/~ + 2) v T r ~ ( A  ) (exp[ --/~g(A"-k)]) (3.2.34) 

i=1 

for any cr"E S(k, n). Here we have used Lemma 3.2.3(b) to get the third 
inequality. We now combine (3.2.31) and (3.2.34) to obtain 

F(n)(q, k; (Z~l, ll),..., (Ak, lk)) 

<<. M(q, k; ll,..., lk) Tr~e~(A)(exp[ - f l H ~ - ~ ] )  (3.2.35) 

where 

M(q, k; l 1 ,..., lk) 

1 k 
= card(A(k, n)) k! CI,2 ~ c2 k 1~ (2/i + 2) v 

i=1 

x e x p ( -  /~ ~ 
16fl/ (3.2.36) 

From the bound in Lemma 3.2.2 

card(A(k, n))~< card(Ek(/1 ,..., lk) M~) (3.2.37) 

and from the definition of M s in (3.2.10) it is easy to check that there is a 
constant c such that 

M~ ~< exp(ck[log k + log I Aq + 11 + log(7 + 3)]) (3.2.38) 

From (3.2.12) and (3.2.10) we also have that for some c > 0  

card(Ek(/1 ,..., l~)) 
k 

~< exp [ck(log k + log ]Aq + 11] I~ exp[c(Ii + 2)] 
i=l 

(3.2.39) 

We combine the definition of C1, 2 in (3.2.17), and (3.2.37)-(3.2.39) to 
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(3.2.36) and we use the fact that k logT<.k logk+ 7 log7 for ~> 1 to con- 
clude that there are constants c~ and c2 such that 

I i _I~l ( - 12 ~]  M(q, k); l~ ,..., lk) <~ c~(n -- k)! exp 32/~]J 

xexp[c2k(logk+log l/q+ 1[)'] (3.2.40) 

We substitute (3.2.40) into (3.2.35) and (3.2.35) into (3.2.8) to obtain the 
following bound: 

ff(~)(q, k) 

~< c k exp [c2k(log k + log [Aq + 1[)-] 

• Tr~e~k(A)(exp [_/~H(A n k)]) 

x ~ ~ exp - - ~ 1 2 + 4 v b ( l i + 2 )  2 
i= 1 A i c A q + l  li= --1 

~d~exp[d2(klogk+ IAq+lf log I/q+1/] Tr.;e~ ~(exp[--flg(A " k)]) 

(3.2.41) 

Here we have choose b such that 4vb < 1/32/~ and we have used the fact 
that k(log k + log 7) ~< const(k log k + 7 log 7) to get the second inequality. 
Next we note that for any e > 0  and for any c~, c2; c3, c > 0  there is a con- 
stant d~ > 0 such that 

Clk+c2(klogk+lAq+~lloglAq+ll)-c(k~+~+lAql~+~)<~d 1 (3.2.42) 

We finally combine (3.2.41) and (3.2.1) and then use (3.2.42) to obtain 

G(')(q, k) ~< exp[ - c '  IAq+ 11 1 + [(/--1)(1 + e)/P] __ c t k  1 +e -t- dl] 

x Tr~(A)(exp[--fiH(A ~ k)] 

for some constant c', d~ > 0. We substitute the above bound to (3.1.24) to 
conclude that 

Z ~G(")(q,k)<~eDZs 1 ~ zn'Tr~)(exp[-flH(An')])=eZ) 
n=Oq>~qo k n ' = O  

for some D > 0 .  Proposition 2.2.1 follows from (3.1.20), (3.1.24), and the 
above bound. This complete the proof of Proposition 2.2.1. | 
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4. C O N T R O L  OF I N T E R A C T I O N S :  PROOF OF T H E O R E M  3.1.1 

In this section we complete the proof of Proposition 2.2.1 by proving 
Theorem 3.1.1. We start with some technical estimates. Let Fq(p) and 
7(v, 2) be defined as in (3.1.12) and (3.1.10), respectively. The following 
result corresponds to Proposition IV.4.1 and Proposition IV.4.3 of Ref. 10. 

L e m m a  4.1. For a given path configuration ((D)nE~q,k, let us 
assume that 

dlFq(p)>~IAq[ l for some d l > 0  

and let 1 < l < p < ? ( v ,  2). Then for any given al > 0  and bl > 0  there exist 
constants c I > 0 and c2 > 0 such that 

al U1 ((co)k) + bl V( ( CO )K) >i Cl IAq  + , l 1 + (l-- 1)y(v.2)/p - -  C2 k 

o n  ~ q , k .  

Proof. By the assumption in the lemma there exists T o ~ [0, fl] such 
that 

' 

Q(?) ~ Aq 

We fix To e [0, fl] so that the above inequality holds. Let 

B ( r ) -  al Ul((co(v))k) + bl V((co(v))k) (4.1) 

where 
1 k 

V((co(z))k)= ~ ~ Jcoi(T)-coi('Co)[ 2 (4.2) 
/J i = 1  

and Ul((co(~))k) has been defined in (3.1.28). We denote that if(r, ~:) is the 
number of coi, i = 1 ..... k such that coi(z) e Q(r), (5 t be the path hitting Aq at 

T=To [i.e., ~I(To)EAq], and r~(r, r) be the number of o3[s such that 
chr(r ) ~ Q(r). By the definition we have 

da ~ if(r, To)P>>.IAq] ~ (4.3) 
Q(r) ~ Aq 

and by the superstability condition [Assumption A(a)] 

B(z) >~ al ~ EA~(r, T) 2 -  Bfi(r, r)] + b 1 V((co)k ) 
Q ( r ) =  A 

~ aln( r, z) 2 -~ 
Q ( r ) ~ A  

x ~ ] eSi(z) -- cDi(ro)] 2] _ al Bk (4.4) 
(hi(r)  ~ Q(r) A 
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We now employ the method used in the proof of Proposition IV.4.1 of 
Ref. 10. Let ~r,(r, r) be the number of o57s such that @(z)e Q(r) and 
@(%) ~ Q(r'). Then 

and so 

~(r, "17) 2 > E 17r'(r, r )  2 
Q(r')~ Aq 

B(z)>~ ~ [alA ~ ~,(r ,z)  2 
Q(r') ~ Aq Q(r) ~ A 

+-~  Z I~,(~)-~,(~o)1 ~ - a l B k  
o3i(z) �9 Q(r):  
~i(zO) �9 Q(r') 

We have arrived at the expression which is the same as that in (4.4.12) of 
Ref. 10. 

Consider the case in which for a given q > 0 

card({&/: c3i(%) E Q(r') and I&i(z) - c3i(%)[ ~< ~(r', To)q}) 

> E�89 %)] 

Since the number of Q(r)'s such that I r - r ' l  ~ h(r', ~o) q is not larger than 
[2~(r', to)q+ 1 Iv we use H61der's inequality to obtain 

&,(r, r)= > ci  ~(r ' ,  zo)  v~ ~(r ' ,  Zo) (~ - v~): _ 4 
Q ( r ) ~ A  

for some constant C'l and 4 .  On the other hand if 

card({e3i: (hi(z0)e Q(r') and Lchi(r)- chi(To)l ~< h(r', %)q}) 

< [�89 ~o)] 

then 

2 
o)i(z) �9 Q(r):r �9 Q(r') 

[(ig('C) ( 7 9 i ( T o ) t 2 ~ c 1 1 r l ( r ' , ' ~ o ) l + 2 q  ' - -  - - C 2  

for some constant c'1 and c~. Choosing q such that vq + (l - vq) 2 = 1 + 2q 
(i.e., q = 1/[-2v + (2 - v)]) we obtain 

B(z)>~c ~ ~(r, z0)7(v'2)-alBk-c2hAqk (4.5) 
Q ( r ) c  Aq 
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For the detailed derivation of (4.5) from (4.4) we refer to the proof of 
Proposition IV.4.1 of Ref. 10. 

We note that 

a~ Ul(((,O)k ) "4- b 1 V((O))k ) ~ 9(7;,) dz (4.6) 

We use H61der's inequality to obtain 

I[Aq[-1 2 Fl(r,'Co)Y]P/~>~[Aql-1 
Q(r) = Aq 

and so by (4.3) 

r~(r, to) p 
Q(r) c Aq 

~(r, Zo)Y >~ IAql l +(t- ~y/p (4.7) 
Q(r) c Aq 

The lemma now follows from (4.5), (4.6), and (4.7). | 

P r o p o s i t i o n  4.2. For any a l > 0  and b l > 0  one can choose q0 
large enough such that for 1 < l <  p < 7(v, 2) there exist constant cl > 0 and 
c; > 0 such that 

al U((co)k) + bl V((cn)k) ~> cl IAq+l I 1+ (/- 1)(1 +e)/p _ _  C2 k 

on 4,k" 
Proof. If �89 IAql l, the proposition follows from Lemma 4.1 and 

the fact that 1 < ?(v, 2). On the other hand if �89 < [Aql t on ~q,k c gq, we 
have that 

Eq= ~ f f  n(r, r)2 dz >~ �89 lAq] ' 
Q(r) c Aa 

by the definition of O~q in (3.1.14). Thus by Assumption A(a) 

al U((co)~) ~ a 1 ~ &fAn(r, r) 2 -  Bn(r, z)] 
Q(r)cA 

>~cl [AqlZ-c2k (4.8) 

on $4. ~ for some constant c1 and c 2. We choose l and p such that 
1 <l<p<7(v ,  2). Then 1 + [ ( l -  1)/p] < l  and so the proposition follows 
from (4.8) and and the definition of Aq in (3.1.9). This completes the proof 
of the proposition. | 
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L e m m a  4.3. For  any a 2 > a n d b 2 > 0  there exist C 3 > 0  and a > 0  
such that for sufficiently large qo, 1 < l <  p <7(v ,  2), and for sufficiently 
small 

a2 Ul( (Og)k ) q_ b2 V( (o.))k ) >~ c3kl + e 

o n  ~q,k"  

ProoL  If k<<.c IAql ~+(t ~)/p for some constant, the lemma follows 
from Proposition 4.2. Thus we next consider the case in which 

k >~c IA~I l +(t-l)/p 

for some c > 0. Let 

k' = card({coi: coi(r) eAq+log k for all r e  [0, fl], i =  1 ..... k} 

We consider the case in which �89 Let ~(r, r) be the number of 
coie {COl ..... co~} such that c0i(r)e Q(r). Then by the superstability 

a2 Ul(((-O)k)/> a2 E JAn(r,  r) 2 -  Bfi(r, r ) ]  dr 
Q ( r ) ~ A  

) a2 A ~ ~(r, "C) 2 dr -- c 'k  
Q(r) ~ dq + log k 

(4.9) 

for some constant c'. We use H61der's inequality to obtain 

Y. r~(r,T):~>lAq+log~l IkAu+logkl 1 y~ 
Q(r) = Aq+log k Q(r) ~ Aq+ log k 

>7 lkx  IAq+logk[-1 

if k' >~ lk. Thus from (4.9) and the definition of Aq it follows that 

a2 U,((cok) >1 c" ]Aql-1 k ~Vk2 - c 'k  (4.10) 

For  small c~, the above is bigger than kl + ~ for some e > 0. Next we consider 
the case in which k' < �89 This means that more than �89 paths hit Au+ 1 and 
Aq+log k during the time interval [0, fl]. Thus 

62 V((co)k) >>- c �89 lq + log k - lq + 1] 2 

>/c,k[e=log(k l )  1] l~+ l (4.11) 

>~ c"U + 
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Thus in either case we have the bound 

a2 U~( (CO )k) + b2 V( ( CO )k) >~ ck 1 + ~ 

This proves the lemma. | 

Corollary 4.4. For any a~ > 0  and b~ > 0  one can choose c~ small 
enough, q0 large enough such that for 1 < l < p < 7 ( v ,  2) there exist con- 
stant Cl > 0 and e > 0 such that 

al Ul( ((~O)k) -~ bl V( ((D)k) ~ el [ IAq + 111 + ( / -1 ) (1  + e)/p _.~ k 1 + e] 

o n  ~q,k 

Proof. The above is a consequence of Proposition 4.2 and Lem- 
ma 4.3. | 

Proposition 4.5. For any b2 > 0, one can choose ~ small enough 
and q0 large enough such that for 1 < l < p < ),(v, 2) 

Ul((co)k) + be r((co)k) >~ ~ A  [Aq] z 

on ~,~, where A is the constant in Assumption A(a). 

Proof. If 20Fq(p)>~lAq[ z, we choose p such that l <  1 + 
( l -  1) V(v, 2)/t) (1 < 7(v, 2)/p). We then apply Lemma 4.1 and Corollary 4.4 
to get the bound in the proposition. On the orther hand, if 20Fq(p)< IAq[ t, 
then Eq>/~o [Aq[ z. Then it follows that 

UI((CO)k  ) 19 >1 N A  [AqX ~ -  Bfik 

and so the bound in the proposition follows from the above bound and 
Corollary 4.4. This proves the proposition. | 

We next control the W((co)k, (co), ~) term. We will employ the 
method similar to that used in Ref. 2. For a given path configuration (co),, 
in ~,k we divide (co)k-- {col, w2,..., co~} into the following two classes: 

(co)~ = (~') w (~) (4.12) 

where 

(~): the paths completely contained in Aq+ 3 
(4.13) 

(~): the paths which cross the boundary ~Aq + 3 of A q + 3 

The following results correspond to Lemma 2.2 and Lemma 2.3 of Ref. 2, 
respectively. 

Lemma 4.6. If ((5) and ((5) are sets of paths of (co)n contained in 
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Aq+l+,(a ~> 0) and A~+ 1, respectively, then there exist c~ small enough and 
qo large enough such that for qo ~< q 

W((~5), (oh)) >~ -~6 A IAq+ll  l 

on gq, where A is the constant in Assumption A(a). 

k e m m a  4.7. Let (f) be the path contained in A,, s >  q +  1. Then 
there is a qo large enough such that for each q >~ qo 

W((C), (co),,-D/> - d l  I~l IA,I z/2 

on gq for some constants did2 > 0, where I~1 is card((~)). 

We leave the proofs of Lemma 4.6 and Lemma 4.7 to the end of this 
section. Using the above lemmas we now prove Theorem 3.1.1. 

Proof of Theorem 3.1.1. From Corollary 4.4, Proposition 4.5, and 
Lemma 4.6 it follows that 

u((co)k) + bv((co)k) + w((cok,  (co),, ~) 

9 1 b 
- 10 u , ( (co)~)+~ ul((co)~)+~ v((co)k) + w((~), (co). ~) 

b 
+ ~ v((co)k)+ w((~), (co). ~) 

>1 -(6 A [Aql~+c'[IAu+ll l+(t l ) ( l + ' l / P + k l + ' ] - l A  16 IAq+llz 

b 
+ ~ V((co)k)+ W((~), (co),_k) (4.14) 

Note that, if the interaction is repulsive, W((~.), (co),_k)>/0. In this case 
the theorem follows from the above inequality. We consider the general 
case. Let (~(s)) ~ (co)k be the paths which are contained in A s and cross the 
boundary 0A s_ ~ of A,_ 1. Obviously we have that by Lemma 4.7 

b 
v((cob) + w((~), (co)._~) 

i [b +W((~(s)),(~),, ~)] /> ~=~,+4 [2 V((~(s))) 

s = q + 4  

s = q + 4  
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For v~<3 we choose l >  1 such that �89 [-and also 1 <V(v, 2)/p so that 
Proposition 4.5 holds]. Notice that ls= [e~S]. The expressions in the 
bracket in the last inequality become positive for sufficiently large 
qo(qo <<. q). Thus for sufficiently large q0 we have 

b 
V((co)~)+ W((~), (co)n k)>~ 0 (4.15) 

Thus for small c~ the theorem follows from (4.14) and (4.15). This com- 
pletes the proof of Theorem 3.1.1. | 

In the rest of this section we prove Lemma 4.6 and Lemma 4.7. We 
first prove Lemma 4.7. 

Proof of Lomma 4.7. We use the method similar to that used in the 
proof of Lemma 2.3 of Ref. 2. By the lower regularity in Assumption A(b) 

- w((~(~)), (coe)) , , -k)  

<~ ~ ~ @(r, r') n(r, (~(r))) n(r', (co(r))) 
Q ( r ) = A , I  Q(r') =Aq+{ 

where n(r, (~(r))) is the number of the paths ~ie (() with ( i ( r )e  Q(r), and 
n(r', (co(r))) is the number of the paths co~e (co)n-k with o)/(~)e Q(r'). We 
use H61der's inequality to obtain 

- w((~(r)) ,  (co(r)). ~) 

k=o e(~)~A~ Q(,'/=A;+~ (4.16) 
d(r , r ' )  = k 

<~ v I ~ ~(k)(k+ 1) (~ 1)/2 Z n(r, (~('c))) 
k = O  Q ( r ) =  A s 

• ~ n(r', (co(~)))~ 

d(r , r  )= 

for some constant v~ depending on v. But 

sup Z n(r', (co(r)))2 ~ E n(r', (co(r))) z (4.17) 
Q ( r )  = A s Q ( r ' )  = A ~+ t Q ( r ' )  ~ As  + r ( k )  

d ( r , r ' )  = k 

where r(k) is the smallest of integers r such that the set {Q(r'): d(r, r')= k 
for all Q(r)cAs} is contained in As+r. Thus we substitute (4.17) into 
(4.16). By integrating 

- W((~), (co),_k)~<v, I~l ~ O(k)(k+ 1) ~"-'~/2 IA,+r(k)l t/2 (4.18) 
k = 0  
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on gq. By Lemma B.2 of Ref. 2 

r(k) ~< 1 + ! log(k + 2) (4.19) 

We also note that by (4.19) and the definition of A q  

IA,I ] <<,exp[~vlr(k)] 

<~ c(k + 1 )~/2 

(4.20) 

for some constant depending on v. From (4.18) and (4.20) it follows that 

W((~), (co)~_k)~c I~l IAsl t/2 L ~p(k)(k+ 1) (v'+'-1)/2 
k - O  

If we choose l = 1 + 6 for sufficiently small 6, then lemma follows from the 
lower regularity (2.2.3) and the above bound. | 

We finally prove Lemma 4.6 by using the method similar to that used 
in the proof of Lemma 2.2. of Ref. 2, and so we complete the proof of 
Theorem 3.1.1. 

Proof of Lomma 4.6. We note that by Assumption A(b) 

- w ( ( ~ ( ~ ) ) ,  ( ~ ( ~ ) ) )  

1 
<~ ~ ~ ~ ~)(r, r')[n(r, (co(z)))2+ n(r', ((o(~))) 2] 

Q ( r )  c Aq + l +a Q ( r ' )  = A~ + 1 

= T 1 + T 2 -I- T3 + T4 + T5 

(4.21) 

where 
1 

T1 =~  

1 
T 2 = 

1 
T 3 = 

Y, E 0(r, r') n(r) 2 
Q ( r )  ~ Aq + 1 +a \Aq  Q ( r ' )  = Aq + 2 + a \ A q  + 1 

Z Z O(r, r') n(r) 2 
Q(r )  ~ Aq Q ( r ' )  = A q + 2 + a \ A q +  1 

Z Z ~b(r, r') rt(r) 2 
Q(r)= Aq+ l +a Q(r')= Aq+ 2+ a 

1 
T4 = -  ~', ~ ~(r, r') n(r') 2 

2 Q ( r ) ~ A q + l + a  O ( r ' ) ~ A q + 2 + a \ A q +  1 

1 
T5 ~-~ E E ~t(r, r ' ) n ( r ' )  2 

Q(r)=Aq+l+a Q(r ) Aq+2+ a 

(4.22) 
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Here n(r)= n(r, (o5(z))) and  n(r ' )= n(r', (05(~))). Let  

F =- ~ ~9(k)(k+l)~ ~< 
k = O  

F ( I ) -  ~ O(k)(k + 1)~-~ 
k = l  

0~- Z O(k') 
k'=lq+l+a+k--lq+l+a 

(4.23) 

Then  the following are easy to obtained:  

1 
T 1 ~< ~ F Z n(r)  2 

Q(r)cAq+l+akAq 

1 T:<.~F(lq+~-/q) 2 n(r): 
Q(r)=Aq 

1 T3~-~F(lq+2+~-lq+l+~) ~. n( r )  2 
Q(r) cAq+ 1 +a 

1 
T4 <~-~ F ~ n(r ' )  2 

Q(r') ~ Aq + 2 +a\Aq + 1 

r~ ~ Z O~ Z ~(r') ~ 
Q(r) = Aq+ I +a k = 1 Q(r') = Aq+ 2 +a+k\Aq+ 1 +a+ k 

(4.24) 

By integrat ing with respect to ~ and by not ing that  lq+l-/q<~ 
[q + a + 2 -- lq + u + 1, we obta in  tha t  

-w((~) ,  (~)) ~< 

~< 

FEAq+2+a\A q + F( lq  + 1 - - / q )  EAq+ ,+~ 

1 
-]-2 Z ~ OkEEAq+2+a+k\Aq+a+2-- EAq+l+a+k\mq+2+a ? 

Q(r)c Aq+ l +a k = ' l  

FEAq+z+a\A q + f(lq+ 1 - lq) E A + 1 + a 

1 
q - 2  E ~ ( O k - - ~ k  + l )  EAq+z+k+a (4.25) 

Q(r)= Aq+ l +a k = l  

Here for B c R v we have wri t ten 

E s -  ~ n(r, ~)2d~ 
Q(r)c B 

(4.26) 
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We assert that, if qo is sufficiently large (q0 ~< q) and if l =  1 + 6 with suf- 
ficiently small c5 > 0, then the following bounds hold: 

[[Aq+ 2 +a[ l -  [Aq[t]/IAq+ ll' < A/48F 

[-[Aq + 1 + a[' F(lq +1 - lq)]/[Aq+ ~[' < A/48 
(4.27) 

IAq+l+a[ [Aq+l[-Z ~ (~bk__r 
k = l  

for ~ small enough. We prove our assertions. By the definition of Aq in 
(4.1.9) the left expression in the first inequality is bounded by 
exp[ev(a + 1)] - 1, and so the first inequality holds for sufficiently small ~. 
We note that l q+l - lq  > ~lq and so F(lq+~- lq)--~ 0 as q--~ aS). This proves 
the second inequality. To prove the last inequality in (4.27) we note that 

[Aq+z+a+klt/[2(lq+z+a+k--/q+2+~) + 3] v' 

<~ [lq+a+2+k/(lq+l+a+k--lq+a+l)] v' 

~< [e~/(1--e--"k)] vl 

~< [e~/(1 - e-~)]v '  

Thus the left side of the third inequality in (4.29) is bounded by 

[e~/(1 - e-~)] vt e ~ ~ (~k - ~Ok+ , ) [2( /u+Z+~+k-  lu+a+ 1)] ~l 
k ~ l  

<~ [ e ~ / ( 1 - e  ~)]~'e ~a ~ [ O ( s ) - - O ( s + l ) ] [ 2 ( s + 3 ) ]  ~t 
s=lq+2+~-lq+l+~ 

---~0 as q ---~ vo 

by the lower regurality and the fact that lq + 2 + a - -  lq + 1 + a --+ oO as q ~ ~ .  
This proves the third inequality in (4.27). 

We note that for qo ~< q < q' that on gq 

EAq, < [Aq,[ l 

EAq'\Aq < EAq" --  EAq (4.28) 

<~ (EAq,- EAq) + [Fq,(p) - Fq(p)] 

<[Aq,[t-[Aq[ l 

where for B c R v 

Fs(p)=- sup ~, n(r, ~)P 
z ~  [0 ,  f l ]  Q(r) c B  
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Thus the lemma follows from (4.25), (4.27), and (4.28). This completes the 
proof of Lemma 4.6. | 

5. PRESSURE A N D  E Q U I V A L E N C E  OF THE B O U N D A R Y  
C O N D I T I O N S :  P R O O F  OF T H E O R E M  2.2.4 

We will prove Theorem 2.2.4 in the following manner. From (2.2.12) it 
follows that 

P a = Poo,A ~ Pa,A ~ Po,A (5.1) 

Thus, if one can prove that the limit 

P =  lira PA (5.2) 
A ~f R v 

exists as A tends to R v in the sense of van Hove, and that 

PO.A--PA---~O as A--+R v (5.3) 

one proves the existence of the infinite volume limit pressure and its 
independence of the boundary conditions. 

We begin to prove Theorem 2.2.4 by showing the existence of the 
pressure with Dirichlet boundary conditions. 

Proposition 5.1. Let A tend to R v in the sense of van Hove. 
Under the assumptions in Theorem 2.2.4 the limit 

P = lira PA 
ATR~' 

exists. 

Proof. Let us consider the following rectangular regions: 

A = ( - l x ,  ll)• 

A l = ( - l l ,  - � 89  

A 2 = (�89 ll) x S (5.4) 

S= ~ (- l i ,  li) 
i = 2  

where b > 0 is the constant given in Theorem 2.2.4. We will show that 

exp[ - m  o [Sj ] ~AI~A2 <~ Z A (5.5) 

for some constant mo~>0. The proposition then follows for translation- 
invariant interactions by a standard argument in statistical mechanics. (*,13~ 

822/40/' 1-2-19 
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We prove (5.5). Since A 1 w A 2 ~ A, it follows that 

3,a>/TrF(S~(AI~A2){exp[--fl(HAI+ HAz+ W(A1,A2))]} (5.6) 

where W(A1, A2) is the operator corresponding to the interaction between 
the particles in A~ and the particles in A 2. The decay property in 
Theorem 2.2.4 yields 

W(A 1, A2) -< 1 "~2 Z (~ + NZQ(r')] (5.7) 
Q(r)=AI  
Q(r ' ) cA2  

We use the Peierls-Bogoliubov-type inequality [see (2.16) of Ref. 9] 

Tr(e A + ") ~> Tr(e a) exp{Tr(Bea)/Tr(eA)} (5.8) 

for trace class operators e A and e A+8. Applying (5.8) and (5.7) to (5.6) and 
using the bounds in (2.2.10) we obtain 

Q(r') c A2 

The bounds in (5.5) now follows from the decay property in (2.2.14) and 
the above bounds. This completes the proof of the proposition. II 

We next prove (5.3) and so complete the proof of Theorem 2.2.4. 

P ropos i t i on  5.2. Let the interaction satisfy Assumption A. Then 

PO,A - -  P A ---+ 0 

as A tends to R v in the sense of van Hove. 

The main idea in proving the above proposition is careful applications 
of the methods in Section 3 and Section 4 with convex combinations of 
Wiener measures corresponding to different boundary conditions. 

Before proving the proposition we need some preparations. Let 
P~,4(x,y;do~) be the conditional Wiener measure corresponding to the 
transition function 

Pt,A(X , y) = exp[-- �89 Aa,A'](X , y) 

the kernel of exp[ - �89  A.,A]. For a notational convenience we write that 
for s~ [0, 1] 

PA,~(x,y;d~o)=sP~o,A(x, y ;do~)+(1- - s )P%,A(x ,y ;do~)  (5.9) 
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That is, PA,s(X, y; de)) is the convex combination of the Wiener measures 
corresponding to Neumann and Dirichlet boundary conditions. We denote 
that 

Z n 

~A(S) = .=0 ~ ~ s .  fA"d(x)" fr lr(X).; d(co).)e -~'~')") (5.10) 

and for any function A((x).) invariant under S. 

Z n 

x e u((o~).) (5.11) 

From the definitions it follows that 

(5.12) 
PA,I(A) = po,A(A) and PA,o(A)=pA(A) 

Let K~,t,s and K~,t,~ be the operators corresponding to the kernels 

K~,t,s(X, y) = ~ PA,~(x, y; do) (5.13) 
og (,a,t) 

and 

KA,I,s(X, Y )  = P A(A,I+ 1)( SE(IV4)zI~ + (1 - -  S) e (B/4)'~a) P A(A,I+ 1)( x ,  Y) 

= f~ ZmA,,+ ~)(co)P~A(](x, y; do)) (5.14) 

respectively [see (3.2.23) and (3.2,24)]. Following the method used in the 
proof of Proposition III.2.2 of Ref. 10 it is easy to check that Lemma 3,2.3 
holds for K~,l,s and K~,t,,- Furthermore all arguments and results in Sec- 
tion 4 hold even if one replaces P~A(X, y; dco) by P~A,~(X, y; &O). 

We next use the fundamental theorem of calculus to get 

Po,a - PA = ~ d(log ~A (s)) 

=lAf ~ ~ (ZA(s)) ds 

(5.15) 
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From (5.10) it follows that 

where 

Park 

Z n 

X ff;t [ P A ' s ( X l '  g ( X l ) ;  d~ol)l~] 

x f~._, PA,s((X).-i, re(x)._1 ; d(c.). 1) 

• e -v(~~ (5.17) 

We will show that 

@ d(Q(r), ZA(S ) (5.18) 

for some constant D >0,  where d(Q(r), OA) is the distance between Q(r) 
and 8A. Then from (5.15), (5.16), and (5.18) it follows that 

Ieo,A -- PAl <~ clOAI/iAI 
--* 0 as A ~ R v 

In the remainder of this section we prove the bounds in (5.18). 
Let K~j,t be the operators of which the kernels are given by 

KSj(x, y) = fe(~J,,) [P~'s(x' y; do)) [~ (5.19) 

We then have the following result: 

L e m m a  8.3. For l = - 1 , 0 ,  1, 2 .... there are constants c1>0 and 
c2 > 0 such that 

( ' )  (a) TrL2(A)(K~,t,s)~<c 1 IA(A, l+ 1)1 exp - l - - ~ l  2 

1 0A)21 (b) [TrL2(A)(K'~,,)l<~c2exp(~-~12)exp[---~d(A, 

d 
~A(S) = ~ ~A(S, r) (5.16) 

Q(r): Q(r) n A v~ 0 
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Proof. As we stated, the part (a) follows from the method similar to 
that used in the proof of Lemma 3.2.3 (see the proof of Proposition III.2.2 
of Ref. 10). To prove the part (b) we note that 

KS,I(x, x) = fc [Po, A(X, X; do)) - PA(X, X; do))] 
(A j) 

If l <~ 2d(A, OA), then 

IK~,t(x, x)l ~ )~A(A,I+ 1)(X) f [P0,A(X, X; dr.) - P A ( X ,  X; do) ) ]  

Here we have use Theorem 6.3.8 of Ref. 1 to get the last inequality. Hence 

]Tr(K;j)I ~< c exp -3--~ d(A, 3A) 2 

On the other hand, if l > ~d(A, 3A), then 

[Tr(K~j)I <~ f d~x fe(~,o Po,A(X, x; do)) 

8(A j) 
(5.20) 

<.clA(A,l+l)[ exp ( -- 1-~fl/2 ) 

E' 1 ~< c' exp - ~ - ~  d(A, ~A) 2 

Here we have use the part (a) of the lemma to get the second inequality. 
Thus we conclude that 

ITr(K~,z)l~<cexp[ - 1 0A) 2] d(A, (5.21) 
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By the method used in (5.20) we also have 

[ 1 1  [Tr(KS,l)l ~< c exp - ~ l 2 (5.22) 

Combining (5.21) and (5.22) we prove the part (b). | 

We now begin to prove Proposition 5,2. 

Proof of Proposition 5.2. As we remarked before it is sufficient to 
show the bounds in (5.18). The basic idea is a modification of the method 
used in Section 3.2. Since the detailed derivation of the bounds in (5.18) 
would be very long and since the main idea is same as that in Section 3.2, 
we will give a sketch of the proof by giving necessary modifications and 
replacements. We leave the details to the reader. 

For a given Q(r), Q(r) n A r qk, we use the following abused notation: 

Aq= (I - l q - ~  + ri, lq +-~+ r' (5.23) 
i = 1  

where lq is given in (3.1.9). Aq is the closed cube centered at r. In the rest of 
this section Aq is the cube defined in (5.23), not in (3.1.9). For a given 
integer we use the decompositions in (3.1.11) and (3.1.19) for f2" ~" 

l ) 

Following each step used to derive the expressions in (3.1.20) and (3.1.26) 
we obtain 

~ ( s ,  r) = Go + ~ Z Z (~(n)(q, k) (5.24) 
n ~ O  q>~qo k 

where Go is the expression obtained by repacing f~"-1 in (5.17) by go and 

Z n 

G(n)(q,k) (k_ l)! (n_k)! ~snfQ(r)~AdXl fA,,_ld(X)n-1 

x fa [PA"(xl' ~(xl); dwl) Io x] 

x f~ P~,s((X),_,,Tz(x), t ; d (co ) ,_ l ) e  -U((~ (5.25) 
q,k-  1 

where gq,k 1 = {(co),_ 1 ~ gq: ~oi(z) e Aq+ 1 for some ~ ~ [0,/~], i =  2 ..... k}. 
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We assert that for q0 sufficiently large one can choose 1 < l < p  < 
7(v, 2) such that the following bounds hold: For any b > 0  there exist 
positive constants Cl, c2 and ~ such that 

U(col)+bv(~ol)+ w(e)l, (co). 0~>Cl (5.26) 

on d~ and 

u((c@) + bV((co)~) + W((o~)~, (~o)~ ~) 

C 3 { I A q [ I +  [ ( l - l ) ( l + e ) / p ]  .j_ ki +e} (5.27) 

on gq,~ i- We prove our assertion. We note that E q <  ]Aq[ z on go for all 
q >/q0. In order to show (5.26) we consider two cases: If COl(r) e Aqo for all 
r e [0 ,  fl], then (5.26) follows from the lower regularity condition 
[Assumption A(b)]. If co1(~o)r Aqo for some % e [0, fl], then (5.26) follows 
from the methods similar to those used in the proofs of Lemma 4.7 and 
(4.15). Next, the bound in (5.27) can be obtained by the method used in 
the proof of Theorem 3.1.1 (see Section 4). We leave the detailed proofs of 
(5.26) and (5.27) to the reader. 

As in (3.2.9) we define 

Z ;Q 
~eSn (r) n-I 

x F(")(q, k; (Q(r), ll), (A2, 12),--., (Ak, lk)) 

= ~ fQ dxl fA d(x)'~-lR((x)n' ~(x)n) 
r:eS,, (r) n I 

(5.28) 

where 

K0((x)n, ~(x)n) = f~ [PA,s(Xl, ~(x)l, &Ol)lo 1 ] 
(Q(r),l) 

x fe PA,s((X)~_~,Tr(x)._l;d(co)~_t) e V((~ 1) 
q,k 1 

R((x)~, ~(x),) = f~ [PA,s(Xl, ~(x), ; doO 1~] 
(O(r),ll) 

x Ig PA,~((x),~_I, ~(X)n 1 ; d(co). 1) 
(q,k 1;(A2,12)...,(Ak,lk) 

x e -v((~ (5.29) 
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Let E,,~ be the operator of which its kernel is given by 

E,,s((X),,, (y) ,)  = fc2, PA,s((X),,, (Y),; d(o)),) e - ~((<~ (5.30) 
Notice that 

SA(S)= ~ Tr~,,(A)(E,,,) (5.31) 
n = O  

Using the bounds in (5.26) and (5.27) and following the steps to derive 
(3.2.8) we obtain the following bounds: 

(~~ ~< cl ,~o (n--- 1)! 1=-1 exp[4vb(l+2) 2 ] Fo(Q(r), l) 

(~(')(q, k) ~< c2 ( k -  1).T(n - k ) !  ~2=Aq+~ ~k=Aq+l t, = --i t~= --1 

i = 1  

• exp[-c(IAql  l+[(t ll(~+~)/p?+kl+~)l (5.32) 

What we have done up to now is the derivation of the forms in (5.24) and 
(5.32) so that the methods used in Section 3.2 can be applied. To prove the 
bound in (5.18) we use the following replacements in Section 3.2: 

K~l,t~(xl, Yl) 

KAi>li(Xi, Yi) 
i =  2,..., k 

exp[ -/TH(A ") ] 

by 

l K~(~,t,(x~, y~) 
KAi, li,s(Xi, Yi) 
i = 2  ..... k 

En,s 

We then use Lemma 5.3 instead of Lemma 3.2.3. Following each step used 
in the second part of (3.2.9) in Section 3.2, one may get the bounds of the 
following forms from (5.32) and (5.33): 

Go ~< ci exp - 9--0--~ d(Q(r), ~A) a Tr~(A)(E~,~) 
n = l  

[-' ] G(')(q, k) <~ ca e x p [ - c ( q  + k) ~ +~] exp ~ d(Q(r), ~A) 2 

x Trar ~Lk(A)(En_ k, s) 
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The bound  in (5.18) follows from (5.24), (5.31) and the above inequalities. 
This completes the p roof  of Propos i t ion  5.2. I 
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Appendix.  Correct ions of Print ing Errata in Ref. 10 

n~, means nth line from the top; n~" means nth line from the bo t tom:  

Page Replace With 

11 7+ 

25 14+ 

29 12+ 

exp - exp - 

-/~H(A") expE--flH(f) ] 

2 Y. 
r~A'  rEA 

f' E A2q 

29 8 T ~(r', z) n(r, z) n(r, r) ~(r', ~) n(r, z) 

30 15+ Z Z 
r~A]q r~A 

32 4+ fs (x) f d ' x  
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